We propose a novel infection spread model based on a random connection graph which represents connections between $n$ individuals. Infection spreads via connections between individuals and this results in a probabilistic cluster formation structure as well as a non-i.i.d. (correlated) infection status for individuals. We propose a class of two-step sampled group testing algorithms where we exploit the known probabilistic infection spread model. We investigate the metrics associated with two-step sampled group testing algorithms. To demonstrate our results, for analytically tractable exponentially split cluster formation trees, we calculate the required number of tests and the expected number of false classifications in terms of the system parameters, and identify the trade-off between them. For such exponentially split cluster formation trees, for zero-error construction, we prove that the required number of tests is $O(\log_2n)$. Thus, for such cluster formation trees, our algorithm outperforms any zero-error non-adaptive group test, binary splitting algorithm, and Hwang's generalized binary splitting algorithm. Our results imply that, by exploiting probabilistic information on the connections of individuals, group testing can be used to reduce the number of required tests significantly even when infection rate is high, contrasting the prevalent belief that group testing is useful only when infection rate is low.


翻译:我们建议基于随机连接图的新型感染传播模式,该模式代表了个人与美元之间的连接。 感染通过个人之间的连接扩散,这导致个人形成一个概率性的集群形成结构以及非i.i.d.(与气候有关)感染状态。 我们建议了一组两步抽样群体测试算法,在那里我们利用已知的概率性感染传播模式。 我们调查了与两步抽样群体测试算法相关的衡量标准。 为了展示我们的结果,在分析上可移动的指数分解集群形成树上,我们计算了所需的测试数量和系统参数参数方面错误分类的预期数量,并确定了两者之间的交易。 对于这种指数性分裂的集群形成树,我们建议了一组零度构造,我们证明所需的测试数量是$(\log_2n)$。 因此,对于这些集群形成型树,我们的算法超过了任何零性不适应性群体测试的尺度。 对于可分析性指数分解算法和黄氏通用的分解算法,我们计算结果表明,在系统参数参数方面所需的测试数量,以及他们之间的交易。 对于这种突变现式组合来说,我们的结果意味着,在利用高度测试时,在使用高度的感染率测试时, 测试时,只有对低感染率的对个人的测试,只有对低比例的测试,我们所使用的集体的判断,只有对低比例的判断,只有对低的测试才能降低式测试,只有对低的测试。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
R语言数据挖掘利器:Rattle包
R语言中文社区
21+阅读 · 2018年11月17日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
利用TensorFlow实现多元逻辑回归和多元线性回归
数据挖掘入门与实战
5+阅读 · 2017年7月4日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
R语言数据挖掘利器:Rattle包
R语言中文社区
21+阅读 · 2018年11月17日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
利用TensorFlow实现多元逻辑回归和多元线性回归
数据挖掘入门与实战
5+阅读 · 2017年7月4日
Top
微信扫码咨询专知VIP会员