In the context of constant--dimension subspace codes, an important problem is to determine the largest possible size $A_q(n, d; k)$ of codes whose codewords are $k$-subspaces of $\mathbb{F}_q^n$ with minimum subspace distance $d$. Here in order to obtain improved constructions, we investigate several approaches to combine subspace codes. This allow us to present improvements on the lower bounds for constant--dimension subspace codes for many parameters, including $A_q(10, 4; 5)$, $A_q(12, 4; 4)$, $A_q(12, 6, 6)$ and $A_q(16, 4; 4)$.
翻译:在常分层子空间代码方面,一个重要问题是确定最大可能大小的编码$A_q(n, d; k)$,其编码为$mathbb{F ⁇ q ⁇ n美元,其最小的子空间距离为$mathb{F ⁇ q ⁇ n美元。在这里,为了获得改进的构造,我们调查了将子空间代码合并的几种方法。这使我们能够提出许多参数的常分层子空间代码下限的改进办法,包括$A_q(10, 4; 5)美元、$A_q(12, 4; 4)美元、$A_q(12, 6, 6)美元和$A_q(16, 4;4)美元。