This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: i) a dataset of pediatric patients including subjects with cystic fibrosis, ii) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and iii) the EXACT'09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT'09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT'09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity.


翻译:本文展示了基于 U-Net 结构的全自动和端到端最佳空气路截断法。 我们使用简单和低模的 3D U-Net 作为主干线, 从而可以处理大三维图像补丁, 通常由全肺组成, 通过网络的单次传递, 这种方法简单、 稳健和高效。 我们验证了三个数据集中三个非常不同特点和不同航道异常的拟议方法 : (一) 包括细胞纤维化对象在内的儿科病人数据集 ; (二) 丹麦肺癌筛查试验的一个子集, 包括慢性阻塞性肺病对象 ; (三) EXACT'09 公共数据集 。 我们比较了我们的方法与其他状态最先进的空气路截断法, 包括根据 EXACT'09 数据评估的文献中的相关学习方法。 我们显示, 我们的方法可以提取高度完整的空气路程,没有多少错误, 包括细胞纤维纤维纤维化的病人; (二) 丹麦肺癌检查试验的一个子片段, 包括慢性阻塞性肺病病的病人; (三) EXACT'09 最高度测试方法, 还报告了我们所有的精确测量方法。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Keras实例:PointNet点云分类
专知
6+阅读 · 2020年5月30日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关VIP内容
相关资讯
Keras实例:PointNet点云分类
专知
6+阅读 · 2020年5月30日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员