Relative radiometric normalization(RRN) of different satellite images of the same terrain is necessary for change detection, object classification/segmentation, and map-making tasks. However, traditional RRN models are not robust, disturbing by object change, and RRN models precisely considering object change can not robustly obtain the no-change set. This paper proposes auto robust relative radiometric normalization methods via latent change noise modeling. They utilize the prior knowledge that no change points possess small-scale noise under relative radiometric normalization and that change points possess large-scale radiometric noise after radiometric normalization, combining the stochastic expectation maximization method to quickly and robustly extract the no-change set to learn the relative radiometric normalization mapping functions. This makes our model theoretically grounded regarding the probabilistic theory and mathematics deduction. Specifically, when we select histogram matching as the relative radiometric normalization learning scheme integrating with the mixture of Gaussian noise(HM-RRN-MoG), the HM-RRN-MoG model achieves the best performance. Our model possesses the ability to robustly against clouds/fogs/changes. Our method naturally generates a robust evaluation indicator for RRN that is the no-change set root mean square error. We apply the HM-RRN-MoG model to the latter vegetation/water change detection task, which reduces the radiometric contrast and NDVI/NDWI differences on the no-change set, generates consistent and comparable results. We utilize the no-change set into the building change detection task, efficiently reducing the pseudo-change and boosting the precision.
翻译:同一地形不同卫星图像的相对辐射性正常化(RRN)对于检测变化、物体分类/分解和制作地图任务是必要的。然而,传统的RRN模型并不健全,受到物体变化的干扰,而精确考虑物体变化的RRN模型不能有力地获得无变化数据集。本文建议通过潜伏变化噪音建模,采用自动稳健相对辐射性标准化方法。他们利用先前的知识,即:在相对辐射性正常化下,没有变化点拥有小规模噪音,在辐射性正常化后,变化点拥有大规模辐射性噪音,将随机预期最大化方法结合起来,迅速和有力地提取无变化的无变化模型,以学习相对辐射性正常化绘图功能。这使我们的模型理论上以概率理论和数学扣减为根据。具体地说,当我们选择与相对辐射性正常化学习计划相结合的直方图时,HM-RRN-MMMG模型取得最佳的性能。 我们的模型具备了对云/稳健的云性变化能力, 将可比较性变化结果用于学习相对的植被性变化。我们的方法自然地将测定了一个硬性指标值比值。