This paper reports on our initial evaluation of The Equitable AI Research Roundtable -- a coalition of experts in law, education, community engagement, social justice, and technology. EARR was created in collaboration among a large tech firm, nonprofits, NGO research institutions, and universities to provide critical research based perspectives and feedback on technology's emergent ethical and social harms. Through semi-structured workshops and discussions within the large tech firm, EARR has provided critical perspectives and feedback on how to conceptualize equity and vulnerability as they relate to AI technology. We outline three principles in practice of how EARR has operated thus far that are especially relevant to the concerns of the FAccT community: how EARR expands the scope of expertise in AI development, how it fosters opportunities for epistemic curiosity and responsibility, and that it creates a space for mutual learning. This paper serves as both an analysis and translation of lessons learned through this engagement approach, and the possibilities for future research.


翻译:本文件报告了我们对公平独立研究圆桌会议的初步评估,该圆桌会议是法律、教育、社区参与、社会正义和技术方面的专家联盟,是一家大型技术公司、非营利机构、非政府组织研究机构和大学合作创建的,目的是就技术新出现的道德和社会危害提供关键的基于研究的观点和反馈,通过半结构的讲习班和大型技术公司内部的讨论,非洲独立研究圆桌会议就如何在与AI技术有关的公平和脆弱性的概念化方面提供了关键的观点和反馈,我们概述了迄今为止在实际工作中,非洲独立研究与权利协会如何运作,这与FACCT社区的关切特别相关:非洲独立研究与权利协会如何扩大开发方面的专门知识范围,如何促进了解好奇心和责任感的机会,以及它如何为相互学习创造空间,本文件既分析和翻译了通过这种参与方法获得的经验教训,也说明了未来研究的可能性。</s>

0
下载
关闭预览

相关内容

负责任的人工智能是需要相关组织设立人工智能使用的标准。首先,人工智能的使用应该在各方面符合道德和法规;其次,从开发到使用需要有一套健全的管理机制;第三,需要强有力的监管机制来确保其使用时的公平公正、通俗易懂、安全稳定。
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2022年12月20日
Arxiv
16+阅读 · 2021年7月18日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员