In this work, the hybrid intelligent computing method, which combines efficient Jaya algorithm with classical Runge-Kutta method is applied to solve the Falkner-Skan equations with various wedge angles, which is the fundamental equation for a variety of computational fluid mechanical problems. With some coordinate transformation, the Falkner-Skan boundary layer problem is then converted into a free boundary problem defined on a finite interval. Then using higher order reduction strategies, the whole problem can be boiled down to a solving of coupled differential equations with prescribed initial and boundary conditions. The hybrid Jaya Runge-Kutta method is found to yield stable and accurate results and able to extract those unknown parameters. The sensitivity of classical shooting method to the guess of initial values can be easily overcome by an integrated robust optimization method. In addition, the Jaya algorithm, without the need for tuning the algorithm-specific parameters, is proved to be effective and stable for minimizing the fitness function in application. By comparing the solutions using the Jaya method with PSO (particle swarm optimization), Genetic algorithm (GA), Hyperband, and the classical analytical methods, the hybrid Jaya Runge-Kutta method yields more stable and accurate results, which shows great potential for solving more complicated multi-field and multiphase flow problems.


翻译:在这项工作中,混合智能计算法将高效的Jaya算法与古典龙格-库塔计算法相结合,用于用各种网格角度解决Falkner-Skan方程式,这是各种计算流体机械问题的基本方程式。通过某种协调转换,Falkner-Skan边界层问题随后被转化成一个在一定间隔内界定的自由边界问题。然后,使用更高的减少顺序战略,整个问题可以归结为解决与规定初始条件和边界条件相结合的混合差异方程式。混合的Jaya Runge-Kutta方法可以产生稳定和准确的结果,并能够提取这些未知的参数。古典射击法对最初值猜测的敏感度可以通过一种综合强力优化方法轻易克服。此外,Jaya算法无需调整特定算法参数,就证明在应用中最大限度地减少健康功能是有效和稳定的。通过将使用Jaya方法的解决方案与PSO(粒子优化)、遗传算法(GA)、Syriband,以及古典分析方法(GAGA)、Syberband)和古典分析法分析方法可以更精确地反映更稳定的多流流流和多阶段(Ring)问题。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年11月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员