We investigate the iterative methods proposed by Maz'ya and Kozlov (see [KM1], [KM2]) for solving ill-posed inverse problems modeled by partial differential equations. We consider linear evolutionary problems of elliptic, hyperbolic and parabolic types. Each iteration of the analyzed methods consists in the solution of a well posed problem (boundary value problem or initial value problem respectively). The iterations are described as powers of affine operators, as in [KM2]. We give alternative convergence proofs for the algorithms by using spectral theory and the fact that the linear parts of these affine operators are non-expansive with additional functional analytical properties (see [Le1,2]). Also problems with noisy data are considered and estimates for the convergence rate are obtained under a priori regularity assumptions on the problem data.


翻译:我们调查了Maz'ya和Kozlov(见[KM1]、[KM2])为解决以部分差异方程为模型的反面问题建议的迭代方法(见[KM1]、[KM2]),我们考虑了椭圆、双曲和抛物线型的线性进化问题,分析后方法的每种迭代方法都包括解决一个很好的问题(分别是边界价值问题或初始价值问题),迭代方法被描述为同系物操作者的权力,如[KM2]所述,我们利用光谱理论为算法提供了替代的趋同证据,我们通过使用光谱理论和下述事实提供了替代的趋同证据,即这些线性操作者的线性部分没有耗尽额外的功能分析特性(见[L1,2]),还考虑了噪音数据的问题,根据关于问题数据的先期假设,对趋同率进行了估计。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2018年3月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员