We analyze the convergence of piecewise collocation methods for computing periodic solutions of general retarded functional differential equations under the abstract framework recently developed in [S. Maset, Numer. Math. (2016) 133(3):525-555], [S. Maset, SIAM J. Numer. Anal. (2015) 53(6):2771--2793] and [S. Maset, SIAM J. Numer. Anal. (2015) 53(6):2794--2821]. We rigorously show that a reformulation as a boundary value problem requires a proper infinite-dimensional boundary periodic condition in order to be amenable of such analysis. In this regard, we also highlight the role of the period acting as an unknown parameter, which is critical since it is directly linked to the course of time. Finally, we prove that the finite element method is convergent, while we limit ourselves to commenting on the infeasibility of this approach as far as the spectral element method is concerned.
翻译:我们分析了在[S. Maset,Numer. Math. 133(3):525-555]、[S. Maset,SISAM J.Numer. Anal. (2015) 53(6):2771-2793]和[S. Maset,SISAM J.Numer. Anal. (2015) 53(6):2794-2821]最近制定的抽象框架下计算一般缓冲功能差异方程的定期解决办法的零碎式同地安置方法的趋同。我们严格地表明,重订为边界值问题需要适当的无限边界周期条件才能进行这种分析。在这方面,我们还强调了这一时期作为未知参数的作用,因为它与时间过程直接相关,因此至关重要。最后,我们证明,有限元素方法是趋同的,而我们仅限于就光谱元素方法而言,我们只评论这一方法的不可行性。