We describe the optimization algorithm implemented in the open-source derivative-free solver RBFOpt. The algorithm is based on the radial basis function method of Gutmann and the metric stochastic response surface method of Regis and Shoemaker. We propose several modifications aimed at generalizing and improving these two algorithms: (i) the use of an extended space to represent categorical variables in unary encoding; (ii) a refinement phase to locally improve a candidate solution; (iii) interpolation models without the unisolvence condition, to both help deal with categorical variables, and initiate the optimization before a uniquely determined model is possible; (iv) a master-worker framework to allow asynchronous objective function evaluations in parallel. Numerical experiments show the effectiveness of these ideas.
翻译:我们描述了在开放源码无衍生物求解器RBFopt中实施的优化算法,该算法基于古特曼的辐射基功能法和雷吉斯和休梅克的光学随机反应表面法,我们建议进行若干修改,旨在概括和改进这两种算法:(一) 使用扩大的空间来代表非元编码中的绝对变量;(二) 改进阶段,以便在当地改进候选解决方案;(三) 不使用单溶性条件的内推模型,以便既能处理绝对变量,又能在唯一确定模型之前启动优化;(四) 总体操作框架,以便平行地进行非同步客观功能评价。