Reservoir Computing is an emerging machine learning framework which is a versatile option for utilising physical systems for computation. In this paper, we demonstrate how a single node reservoir, made of a simple electronic circuit, can be employed for computation and explore the available options to improve the computational capability of the physical reservoirs. We build a reservoir computing system using a memristive chaotic oscillator as the reservoir. We choose two of the available hyperparameters to find the optimal working regime for the reservoir, resulting in two reservoir versions. We compare the performance of both the reservoirs in a set of three non-temporal tasks: approximating two non-chaotic polynomials and a chaotic trajectory of the Lorenz time series. We also demonstrate how the dynamics of the physical system plays a direct role in the reservoir's hyperparameters and hence in the reservoir's prediction ability.
翻译:储量计算是一个新兴的机器学习框架,是使用物理系统进行计算的一个多功能选项。在本文中,我们展示了如何使用一个简单的电子电路组成的单一节点储层来计算和探索提高物理储层计算能力的可用选项。我们用一个中间的混乱振荡器作为储层建立了一个储层计算系统。我们选择了两个可用的超参数,以找到储层的最佳运作机制,从而产生两个储层版本。我们用三种非时空任务来比较这两个储层的性能:近似两种非卫生多面体和洛伦茨时间序列的混乱轨迹。我们还演示了物理系统的动态如何在储层的超参数中直接发挥作用,从而在储层的预测能力中直接发挥作用。