Inspired by the numerical solution of ordinary differential equations, in this paper we propose a novel Reservoir Computing (RC) model, called the Euler State Network (EuSN). The introduced approach makes use of forward Euler discretization and antisymmetric recurrent matrices to design reservoir dynamics that are both stable and non-dissipative by construction. Our mathematical analysis shows that the resulting model is biased towards unitary effective spectral radius and zero local Lyapunov exponents, intrinsically operating at the edge of stability. Experiments on synthetic tasks indicate the marked superiority of the proposed approach, compared to standard RC models, in tasks requiring long-term memorization skills. Furthermore, results on real-world time series classification benchmarks point out that EuSN is capable of matching (or even surpassing) the level of accuracy of trainable Recurrent Neural Networks, while allowing up to 100-fold savings in computation time and energy consumption.


翻译:在普通差异方程式的数字解决方案的启发下,我们在本文件中提出了一个名为Euler国家网络(Eusnational Network)的新型储量计算(RC)模型。引入的方法利用前向电离分解和反对称的经常性矩阵设计储油层动态,这些动态既稳定又不因施工而异。我们的数学分析表明,由此形成的模型偏向单一有效光谱半径和零当地Lyapunov Exponents,在稳定边缘自然运行。合成任务实验表明,与标准的RC模型相比,拟议方法在需要长期记忆化技能的任务中具有显著的优势。此外,实时时间序列分类基准的结果表明,Eusnel能够匹配(甚至超过)可培训的元神经网络的准确度,同时允许在计算时间和能源消耗方面实现高达100倍的节约。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年11月21日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员