In this paper we will derive an integral equation which transform a three-dimensional acoustic transmission problem with \textit{variable} coefficients, non-zero absorption, and mixed boundary conditions to a non-local equation on the skeleton of the domain $\Omega\subset\mathbb{R}^{3}$, where ``skeleton'' stands for the union of the interfaces and boundaries of a Lipschitz partition of $\Omega$. To that end, we introduce and analyze abstract layer potentials as solutions of auxiliary coercive full space variational problems and derive jump conditions across domain interfaces. This allows us to formulate the non-local skeleton equation as a \textit{direct method} for the unknown Cauchy data of the original partial differential equation. We establish coercivity and continuity of the variational form of the skeleton equation without based on an auxiliary full space variational problem. Explicit knowledge of Green's functions is not required and our estimates are explicit in the complex wave number.
翻译:在本文中,我们将导出一个骨架积分方程,将一个具有“变”系数、非零吸收和混合边界条件的三维声传输问题转化为在定义域 $\Omega\subset\mathbb{R}^{3}$ 的骨架上的非局部方程,其中“骨架”是 $\Omega$ 的 Lipschitz 分区的界面和边界的并集。为此,我们引入并分析抽象层位势,作为辅助协同空间变分问题的解,并导出在域界面上的跳跃条件。这使我们能够将非局部骨架方程形式化为原始偏微分方程未知的柯西数据的“直接方法”。我们在不需要具体格林函数的情况下建立了骨架方程的变分形式的一致性和连续性,并可以基于辅助协同空间变分问题。我们的估计是关于复波数的显式的。