This paper considers the Westervelt equation, one of the most widely used models in nonlinear acoustics, and seeks to recover two spatially-dependent parameters of physical importance from time-trace boundary measurements. Specifically, these are the nonlinearity parameter $\kappa(x)$ often referred to as $B/A$ in the acoustics literature and the wave speed $c_0(x)$. The determination of the spatial change in these quantities can be used as a means of imaging. We consider identifiability from one or two boundary measurements as relevant in these applications. For a reformulation of the problem in terms of the squared slowness $\mathfrak{s}=1/c_0^2$ and the combined coefficient $\eta=\frac{B/A+2}{\varrho_0 c_0^4}$ we devise a frozen Newton method and prove its convergence. The effectiveness (and limitations) of this iterative scheme are demonstrated by numerical examples.
翻译:暂无翻译