In this paper, we consider the task of efficiently computing the numerical solution of evolutionary complex Ginzburg--Landau equations. To this aim, we employ high-order exponential methods of splitting and Lawson type for the time integration. These schemes enjoy favorable stability properties and, in particular, do not show restrictions on the time step size due to the underlying stiffness of the models. The needed actions of matrix exponentials are efficiently realized with pointwise operations in Fourier space (when the model is considered with periodic boundary conditions) or by using a tensor-oriented approach that suitably employs the so-called $\mu$-mode products (when the semidiscretization in space is performed with finite differences). The overall effectiveness of the approach is demonstrated by running simulations on a variety of two- and three-dimensional (systems of) complex Ginzburg--Landau equations with cubic and cubic-quintic nonlinearities, which are widely considered in literature to model relevant physical phenomena. In fact, in all instances high-order exponential-type schemes can outperform standard techniques to integrate in time the models under consideration, i.e., the well-known split-step method and the explicit fourth-order Runge--Kutta integrator.
翻译:暂无翻译