The continental plates of Earth are known to drift over a geophysical timescale, and their interactions have lead to some of the most spectacular geoformations of our planet while also causing natural disasters such as earthquakes and volcanic activity. Understanding the dynamics of interacting continental plates is thus significant. In this work, we present a fluid mechanical investigation of the plate motion, interaction, and dynamics. Through numerical experiments, we examine the coupling between a convective fluid and plates floating on top of it. With physical modeling, we show the coupling is both mechanical and thermal, leading to the thermal blanket effect: the floating plate is not only transported by the fluid flow beneath, it also prevents the heat from leaving the fluid, leading to a convective flow that further affects the plate motion. By adding several plates to such a coupled fluid-structure interaction, we also investigate how floating plates interact with each other and show that, under proper conditions, small plates can converge into a supercontinent.
翻译:暂无翻译