In view of the extended formulations (EFs) developments (e.g. "Fiorini, S., S. Massar, S. Pokutta, H.R. Tiwary, and R. de Wolf [2015]. Exponential Lower Bounds for Polytopes in Combinatorial Optimization. Journal of the ACM 62:2"), we focus in this paper on the question of whether it is possible to model an NP-Complete problem as a polynomial-sized linear program. For the sake of simplicity of exposition, the discussions are focused on the TSP. We show that a finding that there exists no polynomial-sized extended formulation of "the TSP polytope" does not (necessarily) imply that it is "impossible" for a polynomial-sized linear program to solve the TSP optimization problem. We show that under appropriate conditions the TSP optimization problem can be solved without recourse to the traditional city-to-city ("travel leg") variables, thereby side-stepping/"escaping from" "the TSP polytope" and hence, the barriers. Some illustrative examples are discussed.
翻译:针对扩展形式 (EFs) 的发展(例如,“Fiorini、S.、S. Massar、S. Pokutta、H.R. Tiwary 和 R. de Wolf [2015]。组合优化中多面体的指数下界。ACM 杂志 62:2”),本文着重探讨以下问题:能否将 NP 完全问题建模为多项式大小的线性规划?为了简化阐述的复杂度,我们仅研究旅行商问题(TSP)。我们表明,如果存在“TSP 多面体”的多项式大小的扩展形式,则不能假设这一发现就意味着不可能使用多项式大小的线性规划求解 TSP 优化问题。在适当的条件下,我们可以不使用传统的城市到城市 (“travel leg”) 变量来求解 TSP 优化问题,从而绕过/避开“TSP 多面体”,也避免了其带来的限制。本文也提供了一些实例来进行示范。