Clipart, a pre-made art form, offers a convenient and efficient way of creating visual content. However, traditional workflows for animating static clipart are laborious and time-consuming, involving steps like rigging, keyframing, and inbetweening. Recent advancements in text-to-video generation hold great potential in resolving this challenge. Nevertheless, direct application of text-to-video models often struggles to preserve the visual identity of clipart or generate cartoon-style motion, resulting in subpar animation outcomes. In this paper, we introduce AniClipart, a computational system that converts static clipart into high-quality animations guided by text-to-video priors. To generate natural, smooth, and coherent motion, we first parameterize the motion trajectories of the keypoints defined over the initial clipart image by cubic B\'ezier curves. We then align these motion trajectories with a given text prompt by optimizing a video Score Distillation Sampling (SDS) loss and a skeleton fidelity loss. By incorporating differentiable As-Rigid-As-Possible (ARAP) shape deformation and differentiable rendering, AniClipart can be end-to-end optimized while maintaining deformation rigidity. Extensive experimental results show that the proposed AniClipart consistently outperforms the competing methods, in terms of text-video alignment, visual identity preservation, and temporal consistency. Additionally, we showcase the versatility of AniClipart by adapting it to generate layered animations, which allow for topological changes.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员