This paper presents a predictive model for estimating regularization parameters of diffeomorphic image registration. We introduce a novel framework that automatically determines the parameters controlling the smoothness of diffeomorphic transformations. Our method significantly reduces the effort of parameter tuning, which is time and labor-consuming. To achieve the goal, we develop a predictive model based on deep convolutional neural networks (CNN) that learns the mapping between pairwise images and the regularization parameter of image registration. In contrast to previous methods that estimate such parameters in a high-dimensional image space, our model is built in an efficient bandlimited space with much lower dimensions. We demonstrate the effectiveness of our model on both 2D synthetic data and 3D real brain images. Experimental results show that our model not only predicts appropriate regularization parameters for image registration, but also improving the network training in terms of time and memory efficiency.


翻译:本文展示了一种预测模型,用于估算二面形图像注册的正规化参数。 我们引入了一个新的框架, 自动确定控制二面形变异平稳度的参数。 我们的方法大大降低了参数调控的努力, 而这既耗时又耗力。 为了实现这一目标, 我们开发了一个基于深层进化神经网络( CNN) 的预测模型, 以学习双向图像与图像注册的正规化参数之间的绘图。 与以前在高维图像空间中估算此类参数的方法相比, 我们的模型建于一个高效的有限空间, 其尺寸要低得多。 我们展示了我们模型在 2D 合成数据和 3D 真实大脑图像上的有效性。 实验结果显示, 我们的模型不仅预测了图像注册的适当正规化参数, 而且还改进了时间和记忆效率方面的网络培训。

0
下载
关闭预览

相关内容

图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题。具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像映射到另一幅图像,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的。 该技术在计算机视觉、医学图像处理以及材料力学等领域都具有广泛的应用。根据具体应用的不同,有的侧重于通过变换结果融合两幅图像,有的侧重于研究变换本身以获得对象的一些力学属性。
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
综述 | 图像配准 Image registration
计算机视觉life
18+阅读 · 2019年9月12日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
6+阅读 · 2021年10月25日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关资讯
综述 | 图像配准 Image registration
计算机视觉life
18+阅读 · 2019年9月12日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员