This paper presents a predictive model for estimating regularization parameters of diffeomorphic image registration. We introduce a novel framework that automatically determines the parameters controlling the smoothness of diffeomorphic transformations. Our method significantly reduces the effort of parameter tuning, which is time and labor-consuming. To achieve the goal, we develop a predictive model based on deep convolutional neural networks (CNN) that learns the mapping between pairwise images and the regularization parameter of image registration. In contrast to previous methods that estimate such parameters in a high-dimensional image space, our model is built in an efficient bandlimited space with much lower dimensions. We demonstrate the effectiveness of our model on both 2D synthetic data and 3D real brain images. Experimental results show that our model not only predicts appropriate regularization parameters for image registration, but also improving the network training in terms of time and memory efficiency.
翻译:本文展示了一种预测模型,用于估算二面形图像注册的正规化参数。 我们引入了一个新的框架, 自动确定控制二面形变异平稳度的参数。 我们的方法大大降低了参数调控的努力, 而这既耗时又耗力。 为了实现这一目标, 我们开发了一个基于深层进化神经网络( CNN) 的预测模型, 以学习双向图像与图像注册的正规化参数之间的绘图。 与以前在高维图像空间中估算此类参数的方法相比, 我们的模型建于一个高效的有限空间, 其尺寸要低得多。 我们展示了我们模型在 2D 合成数据和 3D 真实大脑图像上的有效性。 实验结果显示, 我们的模型不仅预测了图像注册的适当正规化参数, 而且还改进了时间和记忆效率方面的网络培训。