Semantic information provides intra-class consistency and inter-class discriminability beyond visual concepts, which has been employed in Few-Shot Learning (FSL) to achieve further gains. However, semantic information is only available for labeled samples but absent for unlabeled samples, in which the embeddings are rectified unilaterally by guiding the few labeled samples with semantics. Therefore, it is inevitable to bring a cross-modal bias between semantic-guided samples and nonsemantic-guided samples, which results in an information asymmetry problem. To address this problem, we propose a Modal-Alternating Propagation Network (MAP-Net) to supplement the absent semantic information of unlabeled samples, which builds information symmetry among all samples in both visual and semantic modalities. Specifically, the MAP-Net transfers the neighbor information by the graph propagation to generate the pseudo-semantics for unlabeled samples guided by the completed visual relationships and rectify the feature embeddings. In addition, due to the large discrepancy between visual and semantic modalities, we design a Relation Guidance (RG) strategy to guide the visual relation vectors via semantics so that the propagated information is more beneficial. Extensive experimental results on three semantic-labeled datasets, i.e., Caltech-UCSD-Birds 200-2011, SUN Attribute Database, and Oxford 102 Flower, have demonstrated that our proposed method achieves promising performance and outperforms the state-of-the-art approaches, which indicates the necessity of information symmetry.


翻译:语义信息提供了超越视觉概念的类内一致性和阶级间差异性,这在少许Shot Learning(FSL)中已被使用,以进一步实现收益。然而,语义信息只提供给标签样本,而没有标签样本则不存在,其中嵌入通过用语义来指导少数标签样本进行单方面纠正。因此,不可避免地要在语义指导样本和非语义指导样本之间带来一种跨模式的偏差,从而导致信息不对称问题。此外,为了解决这一问题,我们建议建立一个模调-交替促动网络(MAP-Net),以补充没有标签样本的缺失语义信息,而没有标签样本则不提供,在视觉和语义模式上,我们设计了所有样本之间的信息配对等。具体地,MAP-Net通过图形传播了邻居信息,以生成由完整的视觉关系引导的非语义样本的假语义管理,并纠正了特性嵌入。此外,由于视觉和语义化模式之间的差异很大,我们设计了一个更有利的直观性标,S-tailal-tailal 指导了Settrial-dealal-deal-deal ladeal-deal-degradeal-de the the straveldal stravel the sildal se sildaldaldaldaldald sildaldalds thes sildal-s the sildaldaldalds to se silds to sildal- sildaldaldaldaldaldaldaldaldaldaldaldaldalddaldaldaldaldaldaldsdsdsdaldaldalds todsdsdaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
14+阅读 · 2019年9月11日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
Top
微信扫码咨询专知VIP会员