Model-Agnostic Meta-Learning (MAML) has become increasingly popular for training models that can quickly adapt to new tasks via one or few stochastic gradient descent steps. However, the MAML objective is significantly more difficult to optimize compared to standard Empirical Risk Minimization (ERM), and little is understood about how much MAML improves over ERM in terms of the fast adaptability of their solutions in various scenarios. We analytically address this issue in a linear regression setting consisting of a mixture of easy and hard tasks, where hardness is related to the condition number of the task's loss function. Specifically, we prove that in order for MAML to achieve substantial gain over ERM, (i) there must be some discrepancy in hardness among the tasks, and (ii) the optimal solutions of the hard tasks must be closely packed with the center far from the center of the easy tasks optimal solutions. We also give numerical and analytical results suggesting that these insights also apply to two-layer neural networks. Finally, we provide few-shot image classification experiments that support our insights for when MAML should be used and emphasize the importance of training MAML on hard tasks in practice.


翻译:模型-不可测元学习(MAML)对于能够通过一种或几种随机梯度梯度下降步骤迅速适应新任务的培训模式越来越受欢迎。然而,与标准的经验风险最小化相比,MAML目标更难优化,对于MAML在各种情景中解决方案的快速适应性方面相对于机构风险管理的改进程度了解甚少。我们用由简单和艰苦任务混合组成的线性回归环境来分析这一问题,其中难度与任务损失功能的条件数有关。具体地说,我们证明,为了让MAML在机构风险管理方面取得重大收益,(一) 任务之间必须存在一定的难度差异,以及(二) 硬任务的最佳解决方案必须与远离简单任务最佳解决方案中心的中心紧密结合。我们还给出了数字和分析结果,表明这些洞见也适用于两层神经网络。最后,我们提供了几张图像分类实验,支持我们在使用MAML时的洞察点,并强调在实践中培训MAML的硬任务的重要性。

0
下载
关闭预览

相关内容

MAML(Model-Agnostic Meta-Learning)是元学习(Meta learning)最经典的几个算法之一,出自论文《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》。 原文地址:https://arxiv.org/abs/1703.03400
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2020年10月7日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
26+阅读 · 2019年3月5日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
7+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2017年7月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
7+阅读 · 2020年10月7日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
26+阅读 · 2019年3月5日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
7+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员