We present `latentcor`, an R package for correlation estimation from data with mixed variable types. Mixed variables types, including continuous, binary, ordinal, zero-inflated, or truncated data are routinely collected in many areas of science. Accurate estimation of correlations among such variables is often the first critical step in statistical analysis workflows. Pearson correlation as the default choice is not well suited for mixed data types as the underlying normality assumption is violated. The concept of semi-parametric latent Gaussian copula models, on the other hand, provides a unifying way to estimate correlations between mixed data types. The R package `latentcor` comprises a comprehensive list of these models, enabling the estimation of correlations between any of continuous/binary/ternary/zero-inflated (truncated) variable types. The underlying implementation takes advantage of a fast multi-linear interpolation scheme with an efficient choice of interpolation grid points, thus giving the package a small memory footprint without compromising estimation accuracy. This makes latent correlation estimation readily available for modern high-throughput data analysis.
翻译:我们提出`后期数据 ',这是根据混合变量类型数据进行相关估计的R套件;混合变量类型,包括连续数据、二进制数据、正交数据、零充气数据或短流数据,经常在许多科学领域收集。准确估计这些变量之间的相互关系往往是统计分析工作流程中的第一个关键步骤。Pearson的关联性,因为默认选择并不完全适合混合数据类型,因为基本常态假设被违反。半对称潜潜潜潜潜潜潜高素焦云模型的概念,为估计混合数据类型之间的相关性提供了统一的方法。R包`延缩'包含这些模型的综合清单,使得能够估计任何连续/二进制/长期/零充气(调整)变异类型之间的相互关系。基本实施利用快速多线内插计划,高效选择内插网点,从而使该套件的记忆足迹小,而不损害估计准确性。这为现代高通量数据分析提供了潜在的关联性估算。