The generalized extreme value (GEV) distribution is a popular model for analyzing and forecasting extreme weather data. To increase prediction accuracy, spatial information is often pooled via a latent Gaussian process on the GEV parameters. Inference for such hierarchical GEV models is typically carried out using Markov chain Monte Carlo (MCMC) methods. However, MCMC can be prohibitively slow and computationally intensive when the number of latent variables is moderate to large. In this paper, we develop a fast Bayesian inference method for spatial GEV models based on the Laplace approximation. Through simulation studies, we compare the speed and accuracy of our method to both MCMC and a more sophisticated but less flexible Bayesian approximation. A case study in forecasting extreme wind speeds is presented.


翻译:普遍极端值分布是分析和预测极端天气数据的流行模式。为了提高预测的准确性,空间信息往往通过GEV参数的潜伏高斯进程汇集在一起。对这种等级的GEV模型的推论通常使用Markov连锁 Monte Carlo(MCMC)方法进行。然而,当潜伏变量的数量从中到大时,MCMC可能极其缓慢,而且计算密集。在本文中,我们为基于拉普尔近似的空间GEV模型开发了一种快速贝叶斯推论方法。通过模拟研究,我们将我们的方法速度和准确性与MMC和一种更复杂但不那么灵活的Bayesian近似方法进行比较。我们介绍了预测极端风速的案例研究。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员