Ranked set sampling (RSS) is used as a powerful data collection technique for situations where measuring the study variable requires a costly and/or tedious process while the sampling units can be ranked easily (e.g., osteoporosis research). In this paper, we develop ridge and Liu-type shrinkage estimators under RSS data from multiple observers to handle the collinearity problem in estimating coefficients of linear regression, stochastic restricted regression and logistic regression. Through extensive numerical studies, we show that shrinkage methods with the multi-observer RSS result in more efficient coefficient estimates. The developed methods are finally applied to bone mineral data for analysis of bone disorder status of women aged 50 and older.
翻译:对于测量研究变量需要昂贵和(或)繁琐的过程,而取样单位则容易排序(例如骨质疏松症研究)的情况,使用分级抽样作为强有力的数据收集技术(RSS),在本文中,我们根据多个观察家提供的RSS数据,开发脊脊和刘型缩水估计器,以便处理在估计线性回归、随机回归和物流回归等系数方面的共线性问题。我们通过广泛的数字研究,表明采用多观测器RSS的缩缩水方法可产生更有效的系数估计值,最终将开发的方法应用于骨矿数据,用于分析50岁及50岁以上的妇女骨骼失常状况。