Generating a new font library is a very labor-intensive and time-consuming job for glyph-rich scripts. Few-shot font generation is thus required, as it requires only a few glyph references without fine-tuning during test. Existing methods follow the style-content disentanglement paradigm and expect novel fonts to be produced by combining the style codes of the reference glyphs and the content representations of the source. However, these few-shot font generation methods either fail to capture content-independent style representations, or employ localized component-wise style representations, which is insufficient to model many Chinese font styles that involve hyper-component features such as inter-component spacing and "connected-stroke". To resolve these drawbacks and make the style representations more reliable, we propose a self-supervised cross-modality pre-training strategy and a cross-modality transformer-based encoder that is conditioned jointly on the glyph image and the corresponding stroke labels. The cross-modality encoder is pre-trained in a self-supervised manner to allow effective capture of cross- and intra-modality correlations, which facilitates the content-style disentanglement and modeling style representations of all scales (stroke-level, component-level and character-level). The pre-trained encoder is then applied to the downstream font generation task without fine-tuning. Experimental comparisons of our method with state-of-the-art methods demonstrate our method successfully transfers styles of all scales. In addition, it only requires one reference glyph and achieves the lowest rate of bad cases in the few-shot font generation task 28% lower than the second best
翻译:生成新的字体库对于精密的字型脚本来说是一个非常劳力密集和耗时的工作。 因此需要少发的字型生成, 因为它只需要少量的字型引用, 而无需在测试期间进行微调。 现有的方法遵循样式- 内容分解模式, 并期望通过将参考字型的样式代码和源的内容表达方式结合起来来生成新的字型。 但是, 这些少发的字型生成方法要么不能捕捉内容独立的样式表达方式, 要么 使用本地化的元件风格表达式, 这不足以模拟许多包含超成份特征的中国字体样式, 例如: 内部结构间最小间隔和“ 连接 ” 。 为了解决这些回溯, 并使样式表达更加可靠, 我们提出一个自上而上跨式跨式的跨式模式的调解调策略, 以及一个基于跨式模式的变换式的编码, 共同以 glyph 图像和相应的中调标签为条件。 跨式格式添加的索引只是以自上调式的细调方式进行内部的比较。 格式化的比较方法, 使得我们无法有效地获取跨式格式和内部的版本格式格式格式格式格式格式格式格式的代代代数级的代的代代数级化的代的代代代代代代数。