Pre-trained language models (PLMs) have achieved notable success in natural language generation (NLG) tasks. Up to now, most of the PLMs are pre-trained in an unsupervised manner using large-scale general corpus. In the meanwhile, an increasing number of models pre-trained with less labeled data showcase superior performance compared to unsupervised models. Motivated by the success of supervised pre-training, we propose Multi-task superVised Pre-training (MVP) for natural language generation. For pre-training the text generation model MVP, we collect a labeled pre-training corpus from 45 datasets over seven generation tasks. For each task, we further pre-train specific soft prompts to stimulate the model capacity in performing a specific task. Extensive experiments have demonstrated the effectiveness of our supervised pre-training in a number of NLG tasks, and our general methods achieve state-of-the-art performance on 12 of 17 datasets.
翻译:培训前语言模式(PLM)在自然语言生成(NLG)任务方面取得了显著成功,迄今为止,大多数PLM项目都以未经监督的方式,使用大规模一般材料,以未经监督的方式预先培训,与此同时,越来越多的使用标签较少的数据预先培训的模型表现出优于未经监督的模式。受监督的预培训成功推动,我们提议为自然语言生成提供多任务超视前培训(MVP) 。在培训文本生成模型之前,我们从超过7代任务的45个数据集中收集了一个标记的预培训材料。对于每一项任务,我们进一步预先培训具体的软提示,以刺激模型执行具体任务的能力。广泛的实验表明,我们监督的预培训在一些NLG任务中取得了成效,我们的一般方法在17个数据集中的12个中取得了最新业绩。