Real-world data contains various kinds of errors. Before analyzing data, one usually needs to process the raw data. However, traditional data processing based on exactly match often misses lots of valid information. To get high-quality analysis results and fit in the big data era, this thesis studies the error-tolerant big data processing. As most of the data in real world can be represented as a sequence or a set, this thesis utilizes the widely-used sequence-based and set-based similar functions to tolerate errors in data processing and studies the approximate entity extraction, similarity join and similarity search problems. The main contributions of this thesis include: 1. This thesis proposes a unified framework to support approximate entity extraction with both sequence-based and set-based similarity functions simultaneously. The experiments show that the unified framework can improve the state-of-the-art methods by 1 to 2 orders of magnitude. 2. This thesis designs two methods respectively for the sequence and the set similarity joins. For the sequence similarity join, this thesis proposes to evenly partition the sequences to segments. It is guaranteed that two sequences are similar only if one sequence has a subsequence identical to a segment of another sequence. For the set similarity join, this thesis proposes to partition all the sets into segments based on the universe. This thesis further extends the two partition-based methods to support the large-scale data processing framework, Map-Reduce and Spark. The partition-based method won the string similarity join competition held by EDBT and beat the second place by 10 times. 3. This thesis proposes a pivotal prefix filter technique to solve the sequence similarity search problem. This thesis shows that the pivotal prefix filter has stronger pruning power and less filtering cost compared to the state-of-the-art filters.


翻译:真实世界的数据包含各种错误。 在分析数据之前, 通常需要处理原始数据 。 但是, 通常需要处理原始数据 。 但是, 以完全匹配为根据的传统数据处理通常会丢失大量有效信息 。 要同时获得高质量的分析结果并适应大数据时代, 此论文会研究错误容忍性大数据处理。 由于真实世界中的大多数数据可以作为一个序列或一组来表达, 此论文会使用广泛使用的基于序列和基于设置的类似功能来容忍数据处理中的错误, 并研究大约实体的提取、 相似性连接和相似性搜索问题 。 此论文的主要贡献包括 : 1 。 此论文会提出一个统一框架, 支持以基于序列和基于设定的相似性信息 。 此实验显示, 统一框架可以用1到 2 级来改进当前最先进的方法 。 此序列分别设计两种方法用于序列序列和相近的组合 。 关于序列相近性连接性连接, 此序列会建议将序列比对各个部分进行均衡。 保证两个序列的顺序是相似性, 只有当一个序列将连接一个序列的递归为 。 此序列向后, 此序列将一个序列向后, 此序列向一个序列将显示向另一个序列显示的顺序向另一个序列显示 。 。 。 。 。 此序列将显示的顺序向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后推, 此 。 。 。 。 。 。 。 此向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年3月2日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员