In this paper, we address the multi-robot collaborative perception problem, specifically in the context of multi-view infilling for distributed semantic segmentation. This setting entails several real-world challenges, especially those relating to unregistered multi-agent image data. Solutions must effectively leverage multiple, non-static, and intermittently-overlapping RGB perspectives. To this end, we propose the Multi-Agent Infilling Network: an extensible neural architecture that can be deployed (in a distributed manner) to each agent in a robotic swarm. Specifically, each robot is in charge of locally encoding and decoding visual information, and an extensible neural mechanism allows for an uncertainty-aware and context-based exchange of intermediate features. We demonstrate improved performance on a realistic multi-robot AirSim dataset.
翻译:在本文中,我们讨论了多机器人协作认知问题,特别是在多视图填充分布式语义分隔区的背景下。这种环境带来若干现实世界的挑战,尤其是那些与未注册的多试剂图像数据有关的挑战。解决方案必须有效地利用多重、非静态和间歇重叠的RGB视角。为此,我们建议多代理填充网络:一个(以分布方式)在机器人群中向每个代理器部署的可扩展的神经结构。具体地说,每个机器人都负责当地编码和解码视觉信息,而一个可扩展的神经机制可以使中间特征的不确定性和基于背景的交流得以进行。我们展示了现实的多机器人AirSim数据集的改进性能。