Unlike matrix completion, tensor completion does not have an algorithm that is known to achieve the information-theoretic sample complexity rate. This paper develops a new algorithm for the special case of completion for nonnegative tensors. We prove that our algorithm converges in a linear (in numerical tolerance) number of oracle steps, while achieving the information-theoretic rate. Our approach is to define a new norm for nonnegative tensors using the gauge of a particular 0-1 polytope; integer linear programming can, in turn, be used to solve linear separation problems over this polytope. We combine this insight with a variant of the Frank-Wolfe algorithm to construct our numerical algorithm, and we demonstrate its effectiveness and scalability through computational experiments using a laptop on tensors with up to one-hundred million entries.
翻译:与矩阵完成率不同的是, 智能完成率没有已知的算法来实现信息- 理论抽样复杂率。 本文为非负性反粒子完成率的特殊情况开发了一种新的算法。 我们证明我们的算法在达到信息- 理论率的同时,会以直线( 数字容忍度) 数的星格步骤相融合。 我们的方法是使用一个特定的 0-1 多元体的测量器为非负性沙子确定一个新的标准; 整线线性编程反过来可以用来解决该多元体的线性分离问题。 我们把这种洞察与弗兰克- 沃菲 算法的变种结合起来, 来构建我们的数字算法, 我们通过在高达1亿个条目的数子上使用膝上一台膝上电脑进行计算实验, 来证明其有效性和可扩展性。