In this report, we introduce our solution to the Occupancy and Flow Prediction challenge in the Waymo Open Dataset Challenges at CVPR 2022, which ranks 1st on the leaderboard. We have developed a novel hierarchical spatial-temporal network featured with spatial-temporal encoders, a multi-scale aggregator enriched with latent variables, and a recursive hierarchical 3D decoder. We use multiple losses including focal loss and modified flow trace loss to efficiently guide the training process. Our method achieves a Flow-Grounded Occupancy AUC of 0.8389 and outperforms all the other teams on the leaderboard.
翻译:在本报告中,我们介绍了解决2022年CVPR排名第一的Waymo公开数据集挑战中的占用和流动预测挑战的方法,我们开发了一个新型的等级空间时空网络,包括时空空间编码器,一个富含潜在变量的多尺度聚合器,以及一个循环的3D分解器。我们使用多重损失,包括焦点损失和经修改的流量跟踪损失来有效指导培训进程。我们的方法实现了0.8389的循环操作AUC,并超越了领导板上所有其他团队。