Recent work has highlighted the risks of intellectual property (IP) piracy of deep learning (DL) models from the side-channel leakage of DL hardware accelerators. In response, to provide side-channel leakage resiliency to DL hardware accelerators, several approaches have been proposed, mainly borrowed from the methodologies devised for cryptographic implementations. Therefore, as expected, the same challenges posed by the complex design of such countermeasures should be dealt with. This is despite the fact that fundamental cryptographic approaches, specifically secure and private function evaluation, could potentially improve the robustness against side-channel leakage. To examine this and weigh the costs and benefits, we introduce hardware garbled NN (HWGN2), a DL hardware accelerator implemented on FPGA. HWGN2 also provides NN designers with the flexibility to protect their IP in real-time applications, where hardware resources are heavily constrained, through a hardware-communication cost trade-off. Concretely, we apply garbled circuits, implemented using a MIPS architecture that achieves up to 62.5x fewer logical and 66x less memory utilization than the state-of-the-art approaches at the price of communication overhead. Further, the side-channel resiliency of HWGN2 is demonstrated by employing the test vector leakage assessment (TVLA) test against both power and electromagnetic side-channels. This is in addition to the inherent feature of HWGN2: it ensures the privacy of users' input, including the architecture of NNs. We also demonstrate a natural extension to the malicious security modeljust as a by-product of our implementation.


翻译:最近的工作突出了知识产权(IP)盗用DL硬件加速器侧通道渗漏产生的深层学习(DL)模型的风险。作为回应,为向DL硬件加速器提供侧通道渗漏复原力,提出了几种办法,主要是从为加密实施设计的方法中借用,因此,正如预期的那样,应当处理这类对策的复杂设计所构成的同样挑战。尽管基本的加密方法,特别是安全和私用功能评估,有可能提高防侧通道渗漏的稳健性能。为了检查这一点并权衡成本和效益,我们为DL硬件加速器提供了侧通道渗漏耐DL硬件加速器(HWGN2),一个DL硬件加速器在FGA上实施。HWG2还使NN设计者在实时应用中保护其IP方面拥有灵活性,而硬件资源由于硬件通信成本交易而受到严重制约。具体地说,我们采用混合电路路,使用MIPS结构实现最高至62.5x水平的内层漏漏漏漏漏漏漏损(HWG的逻辑和66x内层内层内层内层内层内层内层内层内层内层内层内层内层内层内压系统内压,也通过进一步测试系统内压系统内压,使HWG的内层内层内压系统内压系统内压系统内压系统内压系统内压系统内置。)的内压。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月3日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员