To meet the clinical demand for accurate 3D lumbar spine assessment in a weight-bearing position, this study presents a novel, fully automatic framework for high-precision 3D reconstruction from biplanar X-ray images, overcoming the limitations of existing methods. The core of this method involves a novel multi-task deep learning network that simultaneously performs lumbar decomposition and landmark detection on the original biplanar radiographs. The decomposition effectively eliminates interference from surrounding tissues, simplifying subsequent image registration, while the landmark detection provides an initial pose estimation for the Statistical Shape Model (SSM), enhancing the efficiency and robustness of the registration process. Building on this, we introduce a landmark-weighted 2D-3D registration strategy. By assigning higher weights to complex posterior structures like the transverse and spinous processes during optimization, this strategy significantly enhances the reconstruction accuracy of the posterior arch. Our method was validated against a gold standard derived from registering CT segmentations to the biplanar X-rays. It sets a new benchmark by achieving sub-millimeter accuracy and completes the full reconstruction and measurement workflow in under 20 seconds, establishing a state-of-the-art combination of precision and speed. This fast and low-dose pipeline provides a powerful automated tool for diagnosing lumbar conditions such as spondylolisthesis and scoliosis in their functional, weight-bearing state.
翻译:暂无翻译