This paper addresses the challenge of Lidar-Inertial Odometry (LIO) in dynamic environments, where conventional methods often fail due to their static-world assumptions. Traditional LIO algorithms perform poorly when dynamic objects dominate the scenes, particularly in geometrically sparse environments. Current approaches to dynamic LIO face a fundamental challenge: accurate localization requires a reliable identification of static features, yet distinguishing dynamic objects necessitates precise pose estimation. Our solution breaks this circular dependency by integrating dynamic awareness directly into the point cloud registration process. We introduce a novel dynamic-aware iterative closest point algorithm that leverages spatio-temporal normal analysis, complemented by an efficient spatial consistency verification method to enhance static map construction. Experimental evaluations demonstrate significant performance improvements over state-of-the-art LIO systems in challenging dynamic environments with limited geometric structure. The code and dataset are available at https://github.com/thisparticle/btsa.
翻译:本文针对动态环境中的激光雷达-惯性里程计(LIO)问题展开研究,传统方法因依赖静态世界假设而在动态场景中常失效。当动态物体主导场景时,尤其在几何特征稀疏的环境中,传统LIO算法性能显著下降。现有动态LIO方法面临一个根本性挑战:精确定位需要可靠识别静态特征,而区分动态物体又依赖精确的位姿估计。我们通过将动态感知直接集成到点云配准过程中,打破了这一循环依赖。本文提出一种新颖的动态感知迭代最近点算法,该算法利用时空法向量分析,并辅以高效的空间一致性验证方法以增强静态地图构建。实验评估表明,在几何结构受限的挑战性动态环境中,本方法相较于最先进的LIO系统实现了显著的性能提升。代码与数据集已公开于 https://github.com/thisparticle/btsa。