Many problems in robotics are fundamentally problems of geometry, which lead to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra and dual quaternions. A unification and generalization of these popular formalisms can be found in geometric algebra. The aim of this paper is to showcase the capabilities of geometric algebra when applied to robot manipulation tasks. In particular the modelling of cost functions for optimal control can be done uniformly across different geometric primitives leading to a low symbolic complexity of the resulting expressions and a geometric intuitiveness. We demonstrate the usefulness, simplicity and computational efficiency of geometric algebra in several experiments using a Franka Emika robot. The presented algorithms were implemented in c++20 and resulted in the publicly available library \textit{gafro}. The benchmark shows faster computation of the kinematics than state-of-the-art robotics libraries.
翻译:机器人的许多问题是基本的几何问题,这导致近年来对机器人的几何方法的研究努力增加,其结果是利用螺旋理论、利耶代数和双偏移等各种框架的算法。这些流行的正统主义的统一和概括化可以在几何代数中找到。本文的目的是展示应用到机器人操作任务时几何代数的能力。特别是,对最佳控制的成本函数的建模可以在不同的几何原始中统一进行,从而导致由此产生的表达方式的象征复杂性和几何直观性较低。我们在使用Franka Emika机器人进行的若干实验中显示了几何代数的实用性、简单性和计算效率。所介绍的算法是在c++20中实施的,并导致公开提供的图书馆\textit{gafro}。基准显示,对运动学的计算速度比最新机器人图书馆要快。