The Rains relative entropy of a bipartite quantum state is the tightest known upper bound on its distillable entanglement -- which has a crisp physical interpretation of entanglement as a resource -- and it is efficiently computable by convex programming. It has not been known to be a selective entanglement monotone in its own right. In this work, we strengthen the interpretation of the Rains relative entropy by showing that it is monotone under the action of selective operations that completely preserve the positivity of the partial transpose, reasonably quantifying entanglement. That is, we prove that Rains relative entropy of an ensemble generated by such an operation does not exceed the Rains relative entropy of the initial state in expectation, giving rise to the smallest, most conservative known computable selective entanglement monotone. Additionally, we show that this is true not only for the original Rains relative entropy, but also for Rains relative entropies derived from various R\'enyi relative entropies. As an application of these findings, we prove, in both the non-asymptotic and asymptotic settings, that the probabilistic approximate distillable entanglement of a state is bounded from above by various Rains relative entropies.


翻译:两边量子状态下的雨相对的激素是其可蒸馏的纠结上最接近已知的最深处的圈套 -- -- 对纠结作为一种资源有着精确的物理解释 -- -- 并且它通过 convex 编程可以有效地进行折射。它本身不是已知的有选择性的纠结单色。在这项工作中,我们通过显示它是单一的单一的单一的选择性操作行动来加强对雨相对的纠结的解释。它完全保存部分移转的正象,并合理地量化纠缠。也就是说,我们证明,由这种操作产生的共通物相对的雨相对的激素没有超过最初状态的雨相对的激素,它本身没有被人们所知的最小的、最保守的可比较的选择性纠缠单一。此外,我们表明,这不仅适用于原始的雨相对的激素,而且对于来自各种R'eny相对的纠缠。我们证明,这些结果的相对的相对增味不会超过最初状态的细度,我们通过不稳的状态来证明,这些结果的相对的适应性是不稳的。

0
下载
关闭预览

相关内容

相对熵(relative entropy),又被称为Kullback-Leibler散度(Kullback-Leibler divergence)或信息散度(information divergence),是两个概率分布(probability distribution)间差异的非对称性度量。在在信息理论中,相对熵等价于两个概率分布的信息熵(Shannon entropy)的差值.
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月26日
Arxiv
0+阅读 · 2023年2月25日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员