Machine learning is used to make decisions for individuals in various fields, which require us to achieve good prediction accuracy while ensuring fairness with respect to sensitive features (e.g., race and gender). This problem, however, remains difficult in complex real-world scenarios. To quantify unfairness under such situations, existing methods utilize {\it path-specific causal effects}. However, none of them can ensure fairness for each individual without making impractical functional assumptions on the data. In this paper, we propose a far more practical framework for learning an individually fair classifier. To avoid restrictive functional assumptions, we define the {\it probability of individual unfairness} (PIU) and solve an optimization problem where PIU's upper bound, which can be estimated from data, is controlled to be close to zero. We elucidate why our method can guarantee fairness for each individual. Experimental results show that our method can learn an individually fair classifier at a slight cost of accuracy.
翻译:在各个领域,机器学习被用来为个人做出决策,这要求我们实现良好的预测准确性,同时确保敏感特征(例如种族和性别)的公平性。然而,在复杂的现实世界情景中,这一问题仍然很困难。在这样的情况下,要量化不公平,现有方法使用路径特有的因果关系}。然而,没有一个机器能够确保每个人的公平性,而不对数据作出不切实际的功能假设。在本文中,我们提议了一个更为实用的框架来学习一个个体公平分类师。为了避免限制性的职能假设,我们定义了个人不公平的可能性(PIU),并解决了优化问题,因为PIU的上限可以从数据中估算出来,控制在接近于零。我们解释了为什么我们的方法可以保证每个人的公平性。实验结果表明,我们的方法可以以略微的准确性代价学习一个个体公平分类师。