We point out that the computation of true \emph{proof} and \emph{disproof} numbers for proof number search in arbitrary directed acyclic graphs is NP-hard, an important theoretical result for proof number search. The proof requires a reduction from SAT, which demonstrates that finding true proof/disproof number for arbitrary DAG is at least as hard as deciding if arbitrary SAT instance is satisfiable, thus NP-hard.
翻译:我们指出,在任意方向的单曲图中,真实的\ emph{ 防伪} 和\ emph{ 防伪} 编号的校对编号的计算是NP-hard, 这是搜索校对编号的一个重要理论结果。 证据需要从SAT中减少, 这表明为任意的 DAG 找到真实的证明/ 防伪号码至少和决定任意的 SAT 实例是否值得讽刺一样困难, 也就是NP- hard 。