User satisfaction plays a crucial role in user experience (UX) evaluation. Traditionally, UX measurements are based on subjective scales, such as questionnaires. However, these evaluations may suffer from subjective bias. In this paper, we explore the acoustic and prosodic features of speech to differentiate between positive and neutral UX during interactive sessions. By analyzing speech features such as root-mean-square (RMS), zero-crossing rate(ZCR), jitter, and shimmer, we identified significant differences between the positive and neutral user groups. In addition, social speech features such as activity and engagement also show notable variations between these groups. Our findings underscore the potential of speech analysis as an objective and reliable tool for UX measurement, contributing to more robust and bias-resistant evaluation methodologies. This work offers a novel approach to integrating speech features into UX evaluation and opens avenues for further research in HCI.
翻译:暂无翻译