As the development of the encoder-decoder architecture, researchers are able to study the text generation tasks with broader types of data. Among them, KB-to-text aims at converting a set of knowledge triples into human readable sentences. In the original setting, the task assumes that the input triples and the text are exactly aligned in the perspective of the embodied knowledge/information. In this paper, we extend this setting and explore how to facilitate the trained model to generate more informative text, namely, containing more information about the triple entities but not conveyed by the input triples. To solve this problem, we propose a novel memory augmented generator that employs a memory network to memorize the useful knowledge learned during the training and utilizes such information together with the input triples to generate text in the operational or testing phase. We derive a dataset from WebNLG for our new setting and conduct extensive experiments to investigate the effectiveness of our model as well as uncover the intrinsic characteristics of the setting.
翻译:作为编码器-编码器结构的开发,研究人员能够用更广泛的数据类型来研究文本生成任务,其中包括KB到文字,目的是将一套知识转化为可读的句子。在最初的环境下,任务假定输入的三重和文字完全符合包含的知识/信息的观点。在本文件中,我们扩展了这一设置,并探索如何促进经过培训的模型生成更多信息的案文,即包含更多关于三重实体的信息,而不是通过输入的三重数据传递。为了解决这个问题,我们建议使用一个新的内存增强生成器,利用记忆网络将培训期间学到的有用知识记忆化,并利用这些信息与输入的三重一起生成操作或测试阶段的文字。我们从WebNLG中获取了一个数据集,用于我们的新设置,并进行广泛的实验,以调查我们模型的有效性,并发现环境的内在特征。