Deploying environmental measurement stations can be a costly and time consuming procedure, especially in regions which are remote or otherwise difficult to access, such as Antarctica. Therefore, it is crucial that sensors are placed as efficiently as possible, maximising the informativeness of their measurements. Previous approaches for identifying salient placement locations typically model the data with a Gaussian process (GP). However, designing a GP covariance which captures the complex behaviour of non-stationary spatiotemporal data is a difficult task. Further, the computational cost of these models make them challenging to scale to large environmental datasets. In this work, we explore using convolutional Gaussian neural processes (ConvGNPs) to address these issues. A ConvGNP is a meta-learning model which uses a neural network to parameterise a GP predictive. Our model is data-driven, flexible, efficient, and permits gridded or off-grid input data. Using simulated surface temperature fields over Antarctica as ground truth, we show that a ConvGNP substantially outperforms a non-stationary GP baseline in terms of predictive performance. We then use the ConvGNP in a temperature sensor placement toy experiment, yielding promising results.


翻译:部署环境测量台站可能是一项昂贵和耗时的程序,特别是在偏远或难以进入的南极洲等偏远地区。因此,至关重要的是,应尽可能高效地部署传感器,使其测量信息量最大化。以前为确定显著位置而采用的方法通常用高斯进程模拟数据。然而,设计一个GP变量来捕捉非静止空间数据的复杂行为是一项困难的任务。此外,这些模型的计算成本使它们难以向大型环境数据集扩展规模。在这项工作中,我们探索使用革命高斯神经系统(Conval Gossian Neal process)来解决这些问题。Convulation是一个元学习模型,使用神经网络来对GOP预测进行参数参数化。我们的模型是数据驱动、灵活、高效和网格化或网格外输入数据。使用南极洲模拟地表温度场作为地面事实,我们显示Convuld GNP在预测性能方面大大超出非静止的GP基线。我们随后使用有希望的温度感官测试结果。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月18日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员