We introduce SCooLS, our Smart Contract Learning (Semi-supervised) engine. SCooLS uses neural networks to analyze Ethereum contract bytecode and identifies specific vulnerable functions. SCooLS incorporates two key elements: semi-supervised learning and graph neural networks (GNNs). Semi-supervised learning produces more accurate models than unsupervised learning, while not requiring the large oracle-labeled training set that supervised learning requires. GNNs enable direct analysis of smart contract bytecode without any manual feature engineering, predefined patterns, or expert rules. SCooLS is the first application of semi-supervised learning to smart contract vulnerability analysis, as well as the first deep learning-based vulnerability analyzer to identify specific vulnerable functions. SCooLS's performance is better than existing tools, with an accuracy level of 98.4%, an F1 score of 90.5%, and an exceptionally low false positive rate of only 0.8%. Furthermore, SCooLS is fast, analyzing a typical function in 0.05 seconds. We leverage SCooLS's ability to identify specific vulnerable functions to build an exploit generator, which was successful in stealing Ether from 76.9% of the true positives.


翻译:我们介绍 SCooLS,我们的智能合约学习 (半监督) 引擎。SCooLS使用神经网络分析以太坊合同字节码并识别特定的易受攻击的函数。 SCooLS包含两个关键元素:半监督学习和图神经网络 (GNNs)。半监督学习可以产生比无监督学习更准确的模型,而不需要大量标记的训练集,这是监督学习所需的。 GNNs使得直接分析智能合约字节码成为可能,无需任何手动特征工程,预定义模式或专家规则。 SCooLS是半监督学习应用于智能合约易受攻击性分析的第一个应用程序,也是第一个基于深度学习的易受攻击性分析器,可识别特定的易攻击函数。 SCooLS的性能优于现有工具,准确率为98.4%,F1分数为90.5%,误报率仅为0.8%。此外,SCooLS非常快,可以在0.05秒内分析一个典型的函数。 我们利用SCooLS识别易受攻击的特定函数的能力来构建一个利用生成器,在攻击真阳性数中成功窃取了以太币的76.9%。

0
下载
关闭预览

相关内容

【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
49+阅读 · 2021年11月15日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
金融领域自然语言处理研究资源大列表
专知
13+阅读 · 2020年2月27日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月5日
VIP会员
相关资讯
金融领域自然语言处理研究资源大列表
专知
13+阅读 · 2020年2月27日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员