We study the implementation of Automatic Differentiation Variational inference (ADVI) for Bayesian inference on regression models with bridge penalization. The bridge approach uses $\ell_{\alpha}$ norm, with $\alpha \in (0, +\infty)$ to define a penalization on large values of the regression coefficients, which includes the Lasso ($\alpha = 1$) and ridge $(\alpha = 2)$ penalizations as special cases. Full Bayesian inference seamlessly provides joint uncertainty estimates for all model parameters. Although MCMC aproaches are available for bridge regression, it can be slow for large dataset, specially in high dimensions. The ADVI implementation allows the use of small batches of data at each iteration (due to stochastic gradient based algorithms), therefore speeding up computational time in comparison with MCMC. We illustrate the approach on non-parametric regression models with B-splines, although the method works seamlessly for other choices of basis functions. A simulation study shows the main properties of the proposed method.
翻译:我们研究对Bayesian回归模型的自动差异变异推断法(ADVI)对带有桥梁惩罚的Bayesian回归模型进行自动差异变推法(ADVI)的实施情况。桥梁法使用$\ell ⁇ alpha}标准值(0, ⁇ infty)来界定对大量回归系数(包括Lasso (alpha = 1美元)和Ridge (alpha = 2)美元作为特殊案例)的惩罚值的处罚。完整Bayesian 推断无缝地为所有模型参数提供了共同的不确定性估计值。尽管 MMC 预测法可用于桥梁回归,但对于大型数据集,特别是高尺寸的数据集,其速度可能较慢。ADVI的实施允许在每一次循环中使用小批量的数据(由于基于沙压梯度的算法),从而加快了与MC的计算时间。我们用 B-splines 来说明非参数的非参数回归模型的方法,尽管该方法对其他基础功能的选择是无缝的。模拟研究显示拟议方法的主要特性。