Modeling fracture is computationally expensive even in computational simulations of two-dimensional problems. Hence, scaling up the available approaches to be directly applied to large components or systems crucial for real applications become challenging. In this work. we propose domain decomposition framework for the variational physics-informed neural networks to accurately approximate the crack path defined using the phase field approach. We show that coupling domain decomposition and adaptive refinement schemes permits to focus the numerical effort where it is most needed: around the zones where crack propagates. No a priori knowledge of the damage pattern is required. The ability to use numerous deep or shallow neural networks in the smaller subdomains gives the proposed method the ability to be parallelized. Additionally, the framework is integrated with adaptive non-linear activation functions which enhance the learning ability of the networks, and results in faster convergence. The efficiency of the proposed approach is demonstrated numerically with three examples relevant to engineering fracture mechanics. Upon the acceptance of the manuscript, all the codes associated with the manuscript will be made available on Github.
翻译:模拟骨折的计算成本是昂贵的,即使在对二维问题的计算模拟中也是如此。 因此, 扩大现有方法, 直接应用于对实际应用至关重要的大型部件或系统, 将变得具有挑战性。 在这项工作中, 我们提议了变异物理知情神经网络的域分解框架, 以精确地估计使用阶段字段方法界定的裂缝路径。 我们显示, 将域分解和适应性改进计划结合起来, 可以集中最需要的数值努力: 在裂缝传播的地区周围。 不需要事先知道损坏模式。 使用较小子域中无数深线或浅线神经网络的能力使所建议的方法具有平行能力。 此外, 框架与适应性的非线性激活功能相结合, 提高了网络的学习能力, 并导致更快的趋同。 提议的方法的效率在数字上展示, 与工程断裂力力力力力有关的三个实例。 手稿一旦被接受, 与手稿有关的所有代码都会在Github 上公布。