In this paper, we consider subgeometric ergodicity of univariate nonlinear autoregressions with autoregressive conditional heteroskedasticity (ARCH). The notion of subgeometric ergodicity was introduced in the Markov chain literature in 1980s and it means that the transition probability measures converge to the stationary measure at a rate slower than geometric; this rate is also closely related to the convergence rate of $\beta$-mixing coefficients. While the existing literature on subgeometrically ergodic autoregressions assumes a homoskedastic error term, this paper provides an extension to the case of conditionally heteroskedastic ARCH-type errors, considerably widening the scope of potential applications. Specifically, we consider suitably defined higher-order nonlinear autoregressions with possibly nonlinear ARCH errors and show that they are, under appropriate conditions, subgeometrically ergodic at a polynomial rate. An empirical example using energy sector volatility index data illustrates the use of subgeometrically ergodic AR-ARCH models.
翻译:在本文中,我们考虑的是具有自动递减性有条件的双向自动递减性(ARCH)的单象学非线性自动递减的亚几何概率值。 1980年代,Markov链条文献中引入了亚地基ERgodicity的概念,这意味着,过渡概率测量值与固定测量值的趋同速度比几何慢;这一比率也与$\beta$混合系数的趋同率密切相关。虽然关于亚地基的亚地基自动递增的现有文献假定了一个同系心差的术语,但本文为有条件的重心型ARCH型错误提供了延伸,大大扩大了潜在应用的范围。具体地说,我们考虑定义较高的非线性非线性自动递增率,可能与非线性ARCH错误有适当的定义,并表明在适当条件下,它们是一种多数值的亚地测量值。使用能源部门波动指数数据的一个实验性例子,说明了亚地基AR-AR指数的使用情况。