Self-localization is a fundamental capability that mobile robot navigation systems integrate to move from one point to another using a map. Thus, any enhancement in localization accuracy is crucial to perform delicate dexterity tasks. This paper describes a new location that maintains several populations of particles using the Monte Carlo Localization (MCL) algorithm, always choosing the best one as the sytems's output. As novelties, our work includes a multi-scale match matching algorithm to create new MCL populations and a metric to determine the most reliable. It also contributes the state-of-the-art implementations, enhancing recovery times from erroneous estimates or unknown initial positions. The proposed method is evaluated in ROS2 in a module fully integrated with Nav2 and compared with the current state-of-the-art Adaptive ACML solution, obtaining good accuracy and recovery times.
翻译:自定位是移动机器人导航系统集成的基本能力,以便使用地图从一个点移动到另一个点。 因此, 本地化精确度的任何提高对于执行微妙的灵活任务至关重要。 本文描述了一个使用蒙特卡洛本地化算法( MCL) 维持数组粒子的新位置, 总是选择最佳的算法作为音节的输出。 作为新颖之处, 我们的工作包括一个多级匹配算法, 以创造新的 MCL 群, 以及确定最可靠的度量度。 它还有助于最先进的实施, 提高错误估计或未知初始位置的恢复时间。 所提议方法在与 Nav2 完全整合的模块中在ROS2 中进行了评估, 并与当前最先进的适应性ACML 解决方案进行比较, 获得良好的准确性和恢复时间 。