With the growing access to administrative health databases, retrospective studies have become crucial evidence for medical treatments. Yet, non-randomized studies frequently face selection biases, requiring mitigation strategies. Propensity score matching (PSM) addresses these biases by selecting comparable populations, allowing for analysis without further methodological constraints. However, PSM has several drawbacks. Different matching methods can produce significantly different Average Treatment Effects (ATE) for the same task, even when meeting all validation criteria. To prevent cherry-picking the best method, public authorities must involve field experts and engage in extensive discussions with researchers. To address this issue, we introduce a novel metric, A2A, to reduce the number of valid matches. A2A constructs artificial matching tasks that mirror the original ones but with known outcomes, assessing each matching method's performance comprehensively from propensity estimation to ATE estimation. When combined with Standardized Mean Difference, A2A enhances the precision of model selection, resulting in a reduction of up to 50% in ATE estimation errors across synthetic tasks and up to 90% in predicted ATE variability across both synthetic and real-world datasets. To our knowledge, A2A is the first metric capable of evaluating outcome correction accuracy using covariates not involved in selection. Computing A2A requires solving hundreds of PSMs, we therefore automate all manual steps of the PSM pipeline. We integrate PSM methods from Python and R, our automated pipeline, a new metric, and reproducible experiments into popmatch, our new Python package, to enhance reproducibility and accessibility to bias correction methods.
翻译:暂无翻译