Longevity and safety of Lithium-ion batteries are facilitated by efficient monitoring and adjustment of the battery operating conditions: hence, it is crucial to implement fast and accurate algorithms for State of Health (SoH) monitoring on the Battery Management System. The task is challenging due to the complexity and multitude of the factors contributing to the battery capacity degradation, especially because the different degradation processes occur at various timescales and their interactions play an important role. This paper proposes and compares two data-driven approaches: a Long Short-Term Memory neural network, from the field of deep learning, and a Multivariable Fractional Polynomial regression, from classical statistics. Models from both classes are trained from historical data of one exhausted cell and used to predict the SoH of other cells. This work uses data provided by the NASA Ames Prognostics Center of Excellence, characterised by varying loads which simulate dynamic operating conditions. Two hypothetical scenarios are considered: one assumes that a recent true capacity measurement is known, the other relies solely on the cell nominal capacity. Both methods are effective, with low prediction errors, and the advantages of one over the other in terms of interpretability and complexity are discussed in a critical way.


翻译:高效监测和调整电池运行条件有利于锂离电池的长效和安全性和安全性:因此,对电池管理系统实施卫生状况(SoH)监测快速和准确的算法至关重要。由于造成电池能力退化的因素复杂多样,而且繁多,这项任务具有挑战性,特别是因为不同降解过程发生在不同的时间尺度上,而且它们的互动起着重要作用。本文件提出并比较了两种数据驱动的方法:长期短期内存神经网络,来自深层学习领域,以及传统统计数据中多变的软体复合回归。两个班级的模型都从一个耗尽的电池的历史数据中培训,用来预测其他电池的 SoH。这项工作使用了美国航天局的Ames预测高级研究中心提供的数据,其特点是模拟动态操作条件的不同负荷。考虑了两种假设情景:一种假设是已知最近的真实能力计量,另一种假设完全依赖细胞的标称能力。两种方法都是有效的,预测错误低,一种方法在解释性和复杂性方面优于其他方法。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年11月21日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Arxiv
12+阅读 · 2019年3月14日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员