In this paper, a deep collocation method (DCM) for thin plate bending problems is proposed. This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning. Besides, the proposed DCM is based on a feedforward deep neural network (DNN) and differs from most previous applications of deep learning for mechanical problems. First, batches of randomly distributed collocation points are initially generated inside the domain and along the boundaries. A loss function is built with the aim that the governing partial differential equations (PDEs) of Kirchhoff plate bending problems, and the boundary/initial conditions are minimised at those collocation points. A combination of optimizers is adopted in the backpropagation process to minimize the loss function so as to obtain the optimal hyperparameters. In Kirchhoff plate bending problems, the C1 continuity requirement poses significant difficulties in traditional mesh-based methods. This can be solved by the proposed DCM, which uses a deep neural network to approximate the continuous transversal deflection, and is proved to be suitable to the bending analysis of Kirchhoff plate of various geometries.


翻译:在本文中,提出了对薄板弯曲问题的深层合用法(DCM),该方法利用了深层学习所涉及的计算图表和反向偏移算法;此外,拟议的DCM以进取式深神经网络为基础,不同于以往对机械问题的大部分深层学习应用。首先,在域内和边界沿线最初生成了一批随机分布式合用点。损失功能的构建,目的是使基尔恰夫板弯曲问题和边界/初始条件的调节部分偏差方程(PDEs)最小化。在后向式调整过程中采用了优化器组合,以尽量减少损失功能,从而获得最佳的超光度计。在基尔赫霍夫板块弯曲问题中,C1连续性要求对传统的网状方法造成了严重困难。这可以通过拟议的DCM解决,它使用深层的内线网来估计连续的转弯曲,并被证明适合Kirchhoff板的各种地貌板的弯曲分析。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
76+阅读 · 2021年3月16日
机器翻译深度学习最新综述
专知会员服务
98+阅读 · 2020年2月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月26日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
机器翻译深度学习最新综述
专知会员服务
98+阅读 · 2020年2月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员