We propose two numerical methods for the optimal control of McKean-Vlasov dynamics in finite time horizon. Both methods are based on the introduction of a suitable loss function defined over the parameters of a neural network. This allows the use of machine learning tools, and efficient implementations of stochastic gradient descent in order to perform the optimization. In the first method, the loss function stems directly from the optimal control problem. The second method tackles a generic forward-backward stochastic differential equation system (FBSDE) of McKean-Vlasov type, and relies on suitable reformulation as a mean field control problem. To provide a guarantee on how our numerical schemes approximate the solution of the original mean field control problem, we introduce a new optimization problem, directly amenable to numerical computation, and for which we rigorously provide an error rate. Several numerical examples are provided. Both methods can easily be applied to certain problems with common noise, which is not the case with the existing technology. Furthermore, although the first approach is designed for mean field control problems, the second is more general and can also be applied to the FBSDE arising in the theory of mean field games.
翻译:我们为有限时间范围内最佳控制McKan-Vlasov动态提出了两种数字方法。两种方法都基于引入一个对神经网络参数所定义的适当损失功能。这允许使用机器学习工具,并有效地实施随机梯度下降以优化优化。在第一种方法中,损失功能直接来自最佳控制问题。第二种方法处理的是通用的McKan-Vlasov前向后前向偏差方程系统(FBSDE),并依赖适当的重整作为中度实地控制问题。为了保证我们的数字方案如何接近原始中度实地控制问题的解决方案,我们引入了一种新的优化问题,直接可进行数字计算,并严格提供错误率。提供了几个数字示例。两种方法都可以很容易地适用于常见噪音的某些问题,但与现有技术不同。此外,虽然第一种方法的设计是为了解决中意的实地控制问题,但第二种方法比较普遍,也可以适用于中度场游戏理论中产生的FBSDE。