In high-background or calibration measurements with cryogenic particle detectors, a significant share of the exposure is lost due to pile-up of recoil events. We propose a method for the separation of pile-up events with an LSTM neural network and evaluate its performance on an exemplary data set. Despite a non-linear detector response function, we can reconstruct the ground truth of a severely distorted energy spectrum reasonably well.
翻译:在使用低温粒子探测器的高后地或校准测量中,由于后座事件堆积在一起,大部分接触损失了。我们建议了一种方法,将堆积事件与LSTM神经网络分开,并用一套模范数据来评估其性能。尽管有非线性探测器反应功能,但我们可以合理地重建严重扭曲的能源频谱的地面真实性。