Conducting collaborative tasks, e.g., multi-user game, in virtual reality (VR) could enable us to explore more immersive and effective experience. However, for current VR systems, users cannot communicate properly with each other via their gaze points, and this would interfere with users' mutual understanding of the intention. In this study, we aimed to find the optimal eye tracking data visualization , which minimized the cognitive interference and improved the understanding of the visual attention and intention between users. We designed three different eye tracking data visualizations: gaze cursor, gaze spotlight and gaze trajectory in VR scene for a course of human heart , and found that gaze cursor from doctors could help students learn complex 3D heart models more effectively. To further explore, two students as a pair were asked to finish a quiz in VR environment, with sharing gaze cursors with each other, and obtained more efficiency and scores. It indicated that sharing eye tracking data visualization could improve the quality and efficiency of collaborative work in the VR environment.


翻译:在虚拟现实(VR)环境中进行协作任务,例如多用户游戏,可以使我们探索更具沉浸感和效果的体验。然而,在当前的 VR 系统中,用户无法通过他们的凝视点正确地相互交流,这将干扰用户对意图的相互理解。在本研究中,我们旨在找到最佳的眼动数据可视化,最小化认知干扰,提高用户对可视注意力和意图的理解。我们为人类心脏的一个过程设计了三种不同的眼动数据可视化:凝视光标、凝视聚光灯和视线轨迹,发现医生使用的凝视光标可以更有效地帮助学生学习复杂的 3D 心脏模型。为进一步探索,要求两个学生组成一对在 VR 环境中完成测验,并共享他们的凝视光标,结果显示获得更高的效率和分数。这表明共享式眼动数据可视化可以提高 VR 环境中协作工作的质量和效率。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月5日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员